Software Requirement Analysis

APPENDIX A

Software Requirement Analysis

1. Introduction
1.1. BACKGROUND
Personal Information Manager is a java application for mobile devices. It uses database to
store contact information, day notes and to-do lists, and provides easier way to manage
these information.

1.2. OVERALL DESCRIPTION

At current scenario, mobile devices implement contact information management and day-
note management separately. Current mobile devices allows the user to store contact
name and 3-4 contact numbers only on average mobile phones and additional information
in case of advanced mobile devices.

In case of day-notes, current system is not being able to avoid the collision among the
meeting schedules. Birthday reminders are also needed to be entered separately in
current system. Current system search function allows searching by name only but not by
other fields of information such as phone number, contact group etc.

A

User

View To-do Schedule

Organizer

Enter/Update To-Do Lists

»
»

Enter/Update Day Notes

View Day Notes

FIG1.CONTEXT DIAGRAM OF CURRENT SYSTEM

The new system to be developed must integrate the organizer and contact information.
The other requirement for the new system would be to avoid invalid meeting and
problematic meeting schedules. Allowing different search options would be other necessity
of the new system to be developed. Integrating To-do list and day notes would also be
other concern for the new system.

Software Requirement Analysis

2. GLOSSARY

Figures:

FIG1: Context Diagram of Current System
FIG2: Data Flow Diagram for New System
FIG3: Use Case Diagram

FIG4: List Interface for User

FIG5: Form Interface for User

FIG6: System Architecture of New System

3. INFORMATION FLOW

Personal Information Manager has the three resources of the information to be maintained
and processed, and they include contact information, day notes and to-do lists. This
information would be stored in relational database and are information from current system.

This new system is responsible for managing the available information and newer information
to be added efficiently.

3.1 DATA FLOW DIAGRAM

Personal
Enter contact info, day-notes, to-do schedules _ | Information
User - Manager
Retrieve contact info, day-notes, and alarms 1.0
search
User Enter/update To-do Schedule
Y
v A A A
_\ alaim N alarm TO-DO LISt
Contact segrch Scheduler
Information
Manager | Enterlupdate contact info
1.3
1.1 Search result
Search result Enter/update pgay notes Y
J N
A Day Notes Retrieve
i Manager
Update Retrieve L .
- Update To-Do Lists
-
A 1o
Contact Info Retrieve '
/
A

Update| Retrieve

A
Update > Day Notes

FIG2. Data Flow Diagram of Current System

Software Requirement Analysis

3.2.

CONTROL FLOW AND DESCRIPTION
In the new system, for the better information organization proper flow of control is
required among all three components that are contact manager, day-note manager and

to-do list scheduler.

4.1.

4.2.

Whenever day notes are entered, then the to-do list of that day in particular should
also be updated automatically.

As user chooses to keep a birthday reminder whenever entering the contact
information then day notes should also be automatically updated.

To enter meeting schedules on same day then day note manager should check
collision first then only update the day notes

FUNCTIONAL DESCRIPTION

USER REQUIREMENTS DEFINITION

Enter birthday notes from contact information
Avoid meeting schedule collision

Integrate day-notes and to-do lists

Make contact information available for day notes and to-do lists
Provide multiple search options for contact information and day notes

FUNCTIONAL PARTITIONING
The following functions are required to meet above requirements:

addNewContact()
updateContact()
addBirthdayNote()
addNewNote()
updateNote()
checkCollision()
addToDolList()
updateToDolList()
insertToDolList()
insertFromContact()
searchContact()
searchNote()
searchByName()
searchByNumber()
searchByGroup()
searchByDate()
searchByType()
viewToDolList()

Software Requirement Analysis

. 4

AddNewContact

“uSeS”
AddBirthdayNote

searchByName

searchByNumber

USER

uusesn

searchByGroup

v

AddNewNote

“useSH
M SearchNote searchByDate

nusesu

. 4

searchByType
UpdateNote

. 4

“useS”

“‘uses” N

“uses’

. 4

UpdateToDolList

ViewToDolList

insertFromContact

FIG3. USE CASE DIAGRAM

Software Requirement Analysis

FUNCTIONAL DESCRIPTION
Following are the form-based description of the required functions:

e addBirthdayNote()

Function:
Description:
Inputs:

Source:
Outputs:
Destination:
Requires:
Pre-condition:
Post-condition:

e addNewContact()

Function:
Description:
Inputs:

Source:
Outputs:
Destination:
Requires:
Pre-condition:
Post-condition:

e updateContact()

Function:
Description:
Inputs:

Source:
Outputs:
Destination:
Requires:
Pre-condition:
Post-condition:

e addNewNote()
Function:

Description:
Inputs:

Source:
Outputs:
Destination:
Requires:
Pre-condition:
Post-condition:

Add Birthday Note

Adds a birthday note of a contact to a specific date as a Day Note
Birth date, contact name, time of alarm

User Input

A Birthday note

Day Note database

Day Notes

None

None

Add New Contact

Allows user to enter new contact information

Contact name, Contact numbers, Birth date, Contact group
User Input

None

Contact Database

None

All fields except birthday and contact group should be filled
Contact name should not exist previously

Update Contact

Allows user to update existing contact information

Contact name, Contact numbers, Birth date, Contact group
User Input

None

Contact Database

SearchContact Function

Contact information should exist previously

None

Add Day Note

Allows user to enter new day notes i.e. reminders, meetings, memo etc.

Date of note, Note type, Note information
User Input

None

Day Notes Database

None

All fields should be filled

None

e updateNote()
Function:

Description:
Inputs:

Source:
Outputs:
Destination:
Requires:
Pre-condition:
Post-condition:

e checkCollision()
Function:

Description:
Inputs:

Source:
Outputs:
Destination:
Requires:
Pre-condition:
Post-condition:

e addToDolist()
Function:

Description:
Inputs:

Source:
Outputs:
Destination:
Requires:
Pre-condition:
Post-condition:

e updateToDolList()

Function:
Description:
Inputs:

Source:
Outputs:
Destination:
Requires:
Pre-condition:
Post-condition:

Software Requirement Analysis

Update Day Note

Allows user to update existing day notes

Note information, Note Date pre-pone or postpone
User Input

None

Day Notes Database

searchNote function

None

Day note should exist previously

Check Schedule Collision

Checks whether new meeting schedule collides with existing ones

date of meeting, time of meeting

AddNewNote function and UpdateNote function
Favorable or acceptable or unacceptable

User

None

None

None

Add To Do List

Allows user to enter a new to-do schedule
date, task information, priority

User

None

To-Do List

None

None

None

Update To Do List

Updates an existing record in To-Do List database
Task information, date and priority

User

None

To Do List

None

None

None

e insertToDolList()

Function:
Description:
Inputs:

Source:
Outputs:
Destination:
Requires:
Pre-condition:
Post-condition:

Software Requirement Analysis

Insert to To-Do List

Add to To-Do List from a day notes entered
Day Note

Day Note Database

None

To Do List

None

None

None

e insertFromContact()

Function:
Description:
Inputs:

Source:
Outputs:
Destination:
Requires:
Pre-condition:
Post-condition:

e searchContact()

Function:
Description:
Inputs:

Source:
Outputs:
Destination:
Requires:
Pre-condition:
Post-condition:

e searchNote()
Function:

Description:
Inputs:

Source:
Outputs:
Destination:
Requires:
Pre-condition:
Post-condition:

Insert from Contact

Use contact information to make day notes and To-Do Lists
Contact Name or Contact Numbers

Contact Database

None

To Do List, Day Notes

SearchContact

None

None

Search Contact Information

Search for contact information as per user’s search option

None

None

Contact Search Menu

User

searchByName, searchByNumber and searchByGroup Functions
None

None

Search Day notes

Search day notes either by date or by type of day note
None

None

Note Search Menu

User

searchByDate and SearchByType Functions

None

None

Software Requirement Analysis

e searchByName()

Function: Search By Name

Description: Search Contact Information by contact name
Inputs: Contact name

Source: User

Outputs: Search result

Destination: User

Requires: None

Pre-condition: None

Post-condition: None

e searchByNumber()

Function: Search By Number

Description: Search Contact Information by contact number
Inputs: Contact number

Source: User

Outputs: Search result

Destination: User

Requires: None

Pre-condition: None

Post-condition: None

e searchByGroup()

Function: Search By Group

Description: Search Contact Information by contact group
Inputs: Contact group

Source: User

Outputs: Search result

Destination: User

Requires: None

Pre-condition: None

Post-condition: None

e searchByDate()

Function: Search By Date

Description: Search Day Notes as per date
Inputs: Date

Source: User

Outputs: Search result

Destination: User

Requires: None

Pre-condition: None

Post-condition: None

Software Requirement Analysis

e searchByType()

Function: Search By Type

Description: Search Day Notes as per note type
Inputs: Note Type

Source: User

Outputs: Search result

Destination: User

Requires: None

Pre-condition: None

Post-condition: None

e viewToDolist()

Function: View To-Do Schedule

Description: Displays current day To-Do Schedule
Inputs: None

Source: None

Outputs: To-Do List of the day

Destination: User

Requires: None

Pre-condition: None

Post-condition: None

Among these required functions, current system provides the functions to enter
contact information, day notes and to-do schedules. Also functions to update this
information are also there in current system. Search functions to search contact
information by name only is available. But remaining functions are the major
requirements of the new system to be developed.

5. INTERFACES
5.1. HARDWARE INTERFACE

Personal Information Manager need not communicate with any other hardware so no
hardware interface is required.

5.2. USER INTERFACE
New system would communicate with user through the graphical menus and forms
which would look like following:

Phone Humber 23

Date OF Birth
=diate=

Add Birthday Reminder
S yes
e

Contact Group

FIG4. LIST INTERFACE FIG5. FORM INTERFACE

Software Requirement Analysis

5.3. INTERFACE WITH OTHER SYSTEM
New system would look much more attractive if it succeeds to make an API call to the
vibration mode in the mobile devices. But even if it doesn’t succeed the system would
function efficiently by the alarm signals only.

6. SYSTEM ARCHITECTURE

Graphical User Interface

Forms Lists

Input Processing

Outputs
Information Manager
Alarms
Forms > . o
Database Access Reports
Data Validation

DATABASE

FIG6. SYSTEM ARCHITECTURE OF NEW SYSTEM

7. SYSTEM REQUIREMENTS SPECIFICATION
The new system provides:
Facility to store contact information along with birthday
Facility to add birthday reminder automatically
Facility to search contact information by name, number and group
Facility to enter different day notes without collision during meeting schedules
Integration between Day notes and To-Do Schedule

8. NON-FUNCTIONAL REQUIREMENTS
Non-functional requirements desired for this system are:
o Efficient rescheduling the day notes that includes pre-pone and postpone
e Vibration during alarm signals

Software Requirement Analysis

10.

11.

SOFTWARE CONSTRAINTS

Since system is to be developed for mobile devices, the language to be used would be
J2ME language and the backend database would be the implementation of Java DB. Tool
to be used for this system *

BEHAVIOURAL DESCRIPTION

Any undesirable state is unexpected for the new system.

VALIDATION CRITERIA
11.1. PERFORMANCE BOUNDS

The new system should be around 2MB in size to be compatible for general mobile
devices as well.

11.2. CLASS OF TESTS
Structural White Box testing including path testing should be accomplished
successfully so as to be accepted by the customer.

12. APPENDICES

Data Flow Diagram Notation

\
Process
N %
Interface
Data Store

\

Flow of Process

