
Software Requirement Analysis

APPENDIX A

Software Requirement Analysis

1. Introduction
1.1. BACKGROU�D
Personal Information Manager is a java application for mobile devices. It uses database to

store contact information, day notes and to-do lists, and provides easier way to manage

these information.

1.2. OVERALL DESCRIPTION
At current scenario, mobile devices implement contact information management and day-

note management separately. Current mobile devices allows the user to store contact

name and 3-4 contact numbers only on average mobile phones and additional information

in case of advanced mobile devices.

In case of day-notes, current system is not being able to avoid the collision among the

meeting schedules. Birthday reminders are also needed to be entered separately in

current system. Current system search function allows searching by name only but not by

other fields of information such as phone number, contact group etc.

The new system to be developed must integrate the organizer and contact information.

The other requirement for the new system would be to avoid invalid meeting and

problematic meeting schedules. Allowing different search options would be other necessity

of the new system to be developed. Integrating To-do list and day notes would also be

other concern for the new system.

User

Organizer Enter/Update To-Do Lists

Enter/Update Day Notes

View Day Notes

FIG1.CONTEXT DIAGRAM OF CURRENT SYSTEM

View To-do Schedule

Software Requirement Analysis

2. GLOSSARY
Figures:

FIG1: Context Diagram of Current System

FIG2: Data Flow Diagram for New System

FIG3: Use Case Diagram

FIG4: List Interface for User

FIG5: Form Interface for User

FIG6: System Architecture of New System

3. INFORMATION FLOW
Personal Information Manager has the three resources of the information to be maintained

and processed, and they include contact information, day notes and to-do lists. This

information would be stored in relational database and are information from current system.

This new system is responsible for managing the available information and newer information

to be added efficiently.

3.1. DATA FLOW DIAGRAM

FIG2. Data Flow Diagram of Current System

Software Requirement Analysis

3.2. CONTROL FLOW AND DESCRIPTION
In the new system, for the better information organization proper flow of control is

required among all three components that are contact manager, day-note manager and

to-do list scheduler.

• Whenever day notes are entered, then the to-do list of that day in particular should

also be updated automatically.

• As user chooses to keep a birthday reminder whenever entering the contact

information then day notes should also be automatically updated.

• To enter meeting schedules on same day then day note manager should check

collision first then only update the day notes

4. FUNCTIONAL DESCRIPTION
4.1. USER REQUIREMENTS DEFINITION

• Enter birthday notes from contact information

• Avoid meeting schedule collision

• Integrate day-notes and to-do lists

• Make contact information available for day notes and to-do lists
• Provide multiple search options for contact information and day notes

4.2. FUNCTIONAL PARTITIONING
The following functions are required to meet above requirements:

• addNewContact()

• updateContact()

• addBirthdayNote()

• addNewNote()

• updateNote()

• checkCollision()

• addToDoList()

• updateToDoList()

• insertToDoList()

• insertFromContact()

• searchContact()

• searchNote()

• searchByName()

• searchByNumber()

• searchByGroup()

• searchByDate()

• searchByType()

• viewToDoList()

Software Requirement Analysis

AddNewContact

AddBirthdayNote
“uses”

SearchConact

searchByName

searchByNumber

searchByGroup

updateContact

“uses”

“uses”

“uses”

AddNewNote

SearchNote

checkCollision

searchByDate

searchByType

UpdateNote

AddToDoList

UpdateToDoList

ViewToDoList

insertFromContact

USER

“uses”

“uses”

“uses”

“uses”

“uses”

“uses”

insertToDoList
“uses”

FIG3. USE CASE DIAGRAM

Software Requirement Analysis

4.3. FUNCTIONAL DESCRIPTION
Following are the form-based description of the required functions:

• addBirthdayNote()
Function: Add Birthday Note

Description: Adds a birthday note of a contact to a specific date as a Day Note

Inputs: Birth date, contact name, time of alarm

Source: User Input

Outputs: A Birthday note

Destination: Day Note database

Requires: Day Notes

Pre-condition: None

Post-condition: None

• addNewContact()
Function: Add New Contact

Description: Allows user to enter new contact information

Inputs: Contact name, Contact numbers, Birth date, Contact group

Source: User Input

Outputs: None

Destination: Contact Database

Requires: None

Pre-condition: All fields except birthday and contact group should be filled

Post-condition: Contact name should not exist previously

• updateContact()
Function: Update Contact

Description: Allows user to update existing contact information

Inputs: Contact name, Contact numbers, Birth date, Contact group

Source: User Input

Outputs: None

Destination: Contact Database

Requires: SearchContact Function

Pre-condition: Contact information should exist previously

Post-condition: None

• addNewNote()
Function: Add Day Note

Description: Allows user to enter new day notes i.e. reminders, meetings, memo etc.

Inputs: Date of note, Note type, Note information

Source: User Input

Outputs: None

Destination: Day Notes Database

Requires: None

Pre-condition: All fields should be filled

Post-condition: None

Software Requirement Analysis

• updateNote()
Function: Update Day Note

Description: Allows user to update existing day notes

Inputs: Note information, Note Date pre-pone or postpone

Source: User Input

Outputs: None

Destination: Day Notes Database

Requires: searchNote function

Pre-condition: None

Post-condition: Day note should exist previously

• checkCollision()
Function: Check Schedule Collision

Description: Checks whether new meeting schedule collides with existing ones

Inputs: date of meeting, time of meeting

Source: AddNewNote function and UpdateNote function

Outputs: Favorable or acceptable or unacceptable

Destination: User

Requires: None

Pre-condition: None

Post-condition: None

• addToDoList()
Function: Add To Do List

Description: Allows user to enter a new to-do schedule

Inputs: date, task information, priority

Source: User

Outputs: None

Destination: To-Do List

Requires: None

Pre-condition: None

Post-condition: None

• updateToDoList()
Function: Update To Do List

Description: Updates an existing record in To-Do List database

Inputs: Task information, date and priority

Source: User

Outputs: None

Destination: To Do List

Requires: None

Pre-condition: None

Post-condition: None

Software Requirement Analysis

• insertToDoList()
Function: Insert to To-Do List

Description: Add to To-Do List from a day notes entered

Inputs: Day Note

Source: Day Note Database

Outputs: None

Destination: To Do List

Requires: None

Pre-condition: None

Post-condition: None

• insertFromContact()
Function: Insert from Contact

Description: Use contact information to make day notes and To-Do Lists

Inputs: Contact Name or Contact Numbers

Source: Contact Database

Outputs: None

Destination: To Do List, Day Notes

Requires: SearchContact

Pre-condition: None

Post-condition: None

• searchContact()
Function: Search Contact Information

Description: Search for contact information as per user’s search option

Inputs: None

Source: None

Outputs: Contact Search Menu

Destination: User

Requires: searchByName, searchByNumber and searchByGroup Functions

Pre-condition: None

Post-condition: None

• searchNote()
Function: Search Day notes

Description: Search day notes either by date or by type of day note

Inputs: None

Source: None

Outputs: Note Search Menu

Destination: User

Requires: searchByDate and SearchByType Functions

Pre-condition: None

Post-condition: None

Software Requirement Analysis

• searchByName()
Function: Search By Name

Description: Search Contact Information by contact name

Inputs: Contact name

Source: User

Outputs: Search result

Destination: User

Requires: None

Pre-condition: None

Post-condition: None

• searchByNumber()
Function: Search By Number

Description: Search Contact Information by contact number

Inputs: Contact number

Source: User

Outputs: Search result

Destination: User

Requires: None

Pre-condition: None

Post-condition: None

• searchByGroup()
Function: Search By Group

Description: Search Contact Information by contact group

Inputs: Contact group

Source: User

Outputs: Search result

Destination: User

Requires: None

Pre-condition: None

Post-condition: None

• searchByDate()
Function: Search By Date

Description: Search Day Notes as per date

Inputs: Date

Source: User

Outputs: Search result

Destination: User

Requires: None

Pre-condition: None

Post-condition: None

Software Requirement Analysis

• searchByType()
Function: Search By Type

Description: Search Day Notes as per note type

Inputs: Note Type

Source: User

Outputs: Search result

Destination: User

Requires: None

Pre-condition: None

Post-condition: None

• viewToDoList()
Function: View To-Do Schedule

Description: Displays current day To-Do Schedule

Inputs: None

Source: None

Outputs: To-Do List of the day

Destination: User

Requires: None

Pre-condition: None

Post-condition: None

Among these required functions, current system provides the functions to enter

contact information, day notes and to-do schedules. Also functions to update this

information are also there in current system. Search functions to search contact

information by name only is available. But remaining functions are the major

requirements of the new system to be developed.

5. INTERFACES
5.1. HARDWARE INTERFACE

Personal Information Manager need not communicate with any other hardware so no

hardware interface is required.

5.2. USER INTERFACE
New system would communicate with user through the graphical menus and forms

which would look like following:

FIG4. LIST INTERFACE FIG5. FORM INTERFACE

Software Requirement Analysis

5.3. INTERFACE WITH OTHER SYSTEM
New system would look much more attractive if it succeeds to make an API call to the

vibration mode in the mobile devices. But even if it doesn’t succeed the system would

function efficiently by the alarm signals only.

6. SYSTEM ARCHITECTURE

FIG6. SYSTEM ARCHITECTURE OF NEW SYSTEM

7. SYSTEM REQUIREMENTS SPECIFICATION
The new system provides:

• Facility to store contact information along with birthday

• Facility to add birthday reminder automatically

• Facility to search contact information by name, number and group

• Facility to enter different day notes without collision during meeting schedules

• Integration between Day notes and To-Do Schedule

8. NON-FUNCTIONAL REQUIREMENTS
Non-functional requirements desired for this system are:

• Efficient rescheduling the day notes that includes pre-pone and postpone

• Vibration during alarm signals

Software Requirement Analysis

9. SOFTWARE CONSTRAINTS
Since system is to be developed for mobile devices, the language to be used would be

J2ME language and the backend database would be the implementation of Java DB. Tool

to be used for this system “

10. BEHAVIOURAL DESCRIPTION
Any undesirable state is unexpected for the new system.

11. VALIDATION CRITERIA
11.1. PERFORMANCE BOUNDS

The new system should be around 2MB in size to be compatible for general mobile

devices as well.

11.2. CLASS OF TESTS
Structural White Box testing including path testing should be accomplished

successfully so as to be accepted by the customer.

12. APPENDICES

Data Flow Diagram Notation

